
GradeProof API & Dashboard
COMP3615 Major Project Documentation

GradeProof Team

Contents

1 Introduction . 5

1.1 Aim 5

1.2 About the API & Dashboard 5

2 Deployment . 7

2.1 Setting Up Elasticsearch 7

2.2 Updating Elasticsearch 8

2.3 Setting Up API & Dashboard 11

3 The Product . 13

3.1 The API 13
3.1.1 Routes . 13
3.1.2 API Security . 13

3.2 The Dashboard 14
3.2.1 Users Page . 14
3.2.2 Documents Page . 15
3.2.3 Platforms Page . 16
3.2.4 Rules Page . 17

4 Elasticsearch walkthrough . 19

4.1 Basic Example 19

4.2 More Complicated Example 21

1. Introduction

1.1 Aim
Beginning from August, the COMP3615 Gradeproof team has come together to build an API and
dashboard for our client. The aim of the project was to build a tool to interactively access data
about how our client’s consumers interacted with the GradeProof service. This documentation will
illustrate the tool we have created for our client, including technical details about how our product
fits in with tools that our product is interacting with.

1.2 About the API & Dashboard
The API was designed for the initial purpose of accessing informative data and allowing functionality
of the API to be used across other services. Through the API, you will be able to directly query
Elasticsearch for data and see how the users are interacting with the GradeProof service.

The Dashboard is built into the API and provides a user-friendly visual with multiple options
to edit and adjust query searches. From the dashboard, you will be able to query from user, detection,
document, dictionary and platform tables. Without doubt, the dashboard provided is more adaptable,
customisable and intuitive than Kibana.

2. Deployment

This chapter of the report covers the setup and maintenance to run the Gradeproof API and dashboard.
Note: The deployment chapter is modeled from the test data provided during the development of the
API & dashboard.

2.1 Setting Up Elasticsearch
The Flask API was setup for using a data-hierarchy structure in Elasticsearch. In order to replicate
this Elasticsearch data for production data, first create the production elasticsearch DB on amazon
AWS, then follow the following instructions:

• go to directory /gradeproof_api
• type /manage.py setup_elasticsearch
• follow the instructions on screen
• you will now have a .env file in that directory which you may edit at any time.
If you do not follow these instructions, the app will not work.

8 Chapter 2. Deployment

2.2 Updating Elasticsearch
Relatively low maintenance is required for Elasticsearch however in order to keep Elasticsearch
updated with the constant in take of data from DyanmoDb, we require some Lambda scripts to be
implemented.

Figure 2.1: In blank function, set trigger to Dynamodb

Once you have created a new Lambda function and enabled the trigger between DynamoDB and
the new function, you must configure the code:

1. Within the GradeProof repository go to AWS-Lambda-code/FinalLambdaCopy/
2. Within the directory is four scripts named after the corresponding table in Dynamodb, and a

requests.zip file
3. We must now create an "AWS Deployment Package", this is neccessary to add the python

Requests module to the Lambda function.
4. Unzip the requests.zip file to extract the python module, Requests.
5. Select the newly unzipped Requests folder, and the appropriate python file for the table you

are triggering, and compress them into a .zip folder. Note: The files must be in the root of the
.zip folder, NOT inside a folder

6. Return to the AWS Lambda function page, and go to the "Code" tab.
7. Locate the Dropdown box titled "Code entry type". Change this to "Upload a .zip file", and

upload the newly created .zip file.
8. Once the file has uploaded, you may now change the "Code entry type" back to "Edit code

inline" to make any modifications.
9. You will have to modify the URL pointing to the production Elasticsearch Instance. Addition-

ally, you will have to modify the "_index" in the "Header" dictionary. Change this to your
desired Index, but remember to keep this consistent amongst the other files.

2.2 Updating Elasticsearch 9

10. Finally, on the AWS Lambda page, go to the "Configuration" tab, and modify the "Handler"
field to nameOfPythonFileWithOutFileExtension._lambda_handler

11. Repeat this process for the other 3 remaining tables, and their corresponding Lambda functions.

Figure 2.2: Fillout the details, and Select upload zip under code entry to add the code

10 Chapter 2. Deployment

Figure 2.3: Set Role: "Choosing an existing role" & Existing role: "ddb-elasticsearch-bridge"

Figure 2.4: Review what you have done and click Create function

2.3 Setting Up API & Dashboard 11

2.3 Setting Up API & Dashboard
This is the initial setup used for local machine:

• Make sure you have Python3 installed which will include the package manager, pip.
• Open a terminal and change directory into the gradeproof_api folder within the root directory
• Install virtualenv through pip. Using a virtual environment will reduce the cluttering of

installing global packages. pip install virtualenv
• Create your virtual environment virtualenv -p python3 venv
• Start virtual environment source venv/bin/activate
• Install all packages required for the application: pip install -r requirements.txt This will

install your packages within your virtual machine.
• After the packages are installed, run application: python app.py in the directory containing

app.py
• Open a browser and in the address bar type http://localhost:5000 and press enter.
• You have now successfully installed and run the GradeProof statistics dashboard.

3. The Product

3.1 The API
3.1.1 Routes

The following routes are available

api_dictionary.get_dictionary_data GET /api/dictionary/
api_platforms.platforms_accepted_rate GET /api/platforms/
query.match_query GET /api/query/match
api_rules.get_rules GET /api/rules/
api_rules.get_rule GET /api/rules/[rule_id]/context
api_rules.most_common_used_rules GET /api/rules/common
api_users.get_user GET /api/users/[user_id]
api_users.single_user_aggregate GET /api/users/[user_identifier]/aggregate
api_users.all_user_aggregate GET /api/users/aggregate
api_users.find_user GET /api/users/search

The first column indicates which python module and method is assigned to which api route.

3.1.2 API Security
Unfortunately at the time of this writing, the security of the API itself were not finished in time.
However, we did implement best practices in keeping sensitive information out of the source code
with the use of .env files as explained earlier.

In the file /gradeproof_api/client.py you will see a stub to add a secure check onto
elasticsearch using amazon to ensure that only your service can access it. This should be enough to
cover elasticsearch itself, though the API itself will still need securing.

14 Chapter 3. The Product

3.2 The Dashboard
The dashboard is created using Vue.js - a frontend UI library. The unfortunate side of this is to make
changes to the frontend it must be recompiled. To do so, you must have node/npm installed, and after
having the required packages installed (by navigating the main directory and typing npm install):

Compiling
• navigate to /main
• type node_modules/gulp/bin/gulp.js

3.2.1 Users Page
Description
The users page is used for all our user related queries using the User table. On most occasions data
is aggregated when requesting more data from other tables.
The users page provides the following information:

• User’s details
• Dictionary words added from User
• Platforms that the user has interacted with

Functionality
The users page provides the following functionality:

• Tables that provide user usage over time data.
• A search function that finds a users aggregated data.

Figure 3.1: Search for users and navigate to user page by clicking user

3.2 The Dashboard 15

Figure 3.2: Find user details

3.2.2 Documents Page
The documents page is used platform related queries.

The documents page provides the following information:
• Shows the counts for query based search results. i.e as a result

Functionality
The platforms page provides the following functionality:

• Search function to query text

Figure 3.3: Counts from query search

16 Chapter 3. The Product

3.2.3 Platforms Page
The platforms page is used platform related queries.

The platforms page provides the following information:
• Shows the count per platform displayed in a chart

Functionality
The platforms page provides the following functionality:

• No, current customisation added as of yet.

Figure 3.4: Counts per platforms displayed here

3.2 The Dashboard 17

3.2.4 Rules Page
The rules page is used for all our rule related queries using the detection table.

The rules page provides the following information:
• The acceptance and rejection rate for the Rules displayed in a table.
• Text context where the rule is accepted and rejected.
• Rule information about the text case

Functionality
The rule page provides the following functionality:

• Text context where a rule has been breached.
• A search function that finds a particular rule.

Figure 3.5: Search for rules and navigate to rule page by clicking rule

Figure 3.6: Select Accepted or Rejected to see the context of the rule

4. Elasticsearch walkthrough

4.1 Basic Example

In this section we will walkthrough a basic Elasticsearch query explaining what each level of it does.
The purpose of this query is to return the number of interactions with a specific rule. This query
would be searching the ’detection’ table. Here is the entire query:

{
"size": 0,
"query": {

"constant_score": {
"filter": {

"bool": {
"should": [

{ "term": { "ignored": true }},
{ "term": { "ignoredAll": true }},
{ "term": { "removed": true }},
{ "term": { "addedToDictionary": true }},
{ "exists": { "field": "replacedWith" }}

],
"must": [

{ "term": { "languageToolRuleId": "morfologik_rule_en_au" }}
]

}
}

}
}

}

Now let’s go through the query line by line.

20 Chapter 4. Elasticsearch walkthrough

"size": 0,

The first line is the size parameter. It tells our query how many results to return. In this case 0 as
we do not want to actually see any of the detections we just want a count of them.

"query": {

The query parameter, everything following this is the body of our query.

"constant_score": {

Usually when returning results Elasticsearch scores each result on how well it matches the query.
As we just want to include/exclude documents we use the constant score parameter and the results
are given a uniform score of one (even though we aren’t returning any results).

"filter": {

The filter parameter puts the query in filter context, meaning no scores will be calculated for
results, the return will be a simple yes or no. It can be used as a parameter in the constant score
query as here.

"bool": {

The bool query is placed inside a constant score query. It allows us to build queries with multiple
clauses.

"should": [

Should is the same as saying at least one of these clauses is must match for a document to be
returned as an interaction. It is the equivalent of an OR statement.

{ "term": { "ignored": true }},
{ "term": { "ignoredAll": true }},
{ "term": { "removed": true }},
{ "term": { "addedToDictionary": true }},

Term queries find documents that contain the exact term specified in the inverted index of a
specified field.

{ "exists": { "field": "replacedWith" }}

Exists queries return documents that have at least one non-null value in the original field.

"must": [
{ "term": { "languageToolRuleId": "morfologik_rule_en_au" }}

As ’should’ is to OR ’must’ is to AND. For a document to be returned it must match every clause
specified under a must.

4.2 More Complicated Example 21

4.2 More Complicated Example
Our more complicated example will search for the number of interactions again. This time for a
specific user id and in a specific date range. This example is again searching the detection table. Full
query:

{
"size": 0,
"query": {
"constant_score": {

"filter": {
"bool": {

"should": [
{ "term": { "ignored": true }},
{ "term": { "ignoredAll": true }},
{ "term": { "removed": true }},
{ "term": { "addedToDictionary": true }},
{ "exists": { "field": "replacedWith" }}

],
"must": [

{ "has_parent": {
"type": "document",
"query": {

"has_parent": {
"type": "user",
"query": {

"match": {
"_id": "7ec54f7d7682"

}
}

}
}

}},
{ "range": {

"detectedAt": {
"gte": 1400000000000,
"lte": 1500000000000

}
}}

]
}

}
}

}
}

Now let’s go through it one section at a time again.

22 Chapter 4. Elasticsearch walkthrough

{
"size": 0,
"query": {
"constant_score": {

"filter": {
"bool": {

"should": [
{ "term": { "ignored": true }},
{ "term": { "ignoredAll": true }},
{ "term": { "removed": true }},
{ "term": { "addedToDictionary": true }},
{ "exists": { "field": "replacedWith" }}

]

This section is exactly the same as the last query. We are doing a yes/no selection of only those
detections that have been interacted with.

"must": [
{ "has_parent": {

"type": "document",

This is where our query starts to differ. Under the must section of the bool query we are running
a has parent query. The has parent query will return children based on data in their parents, in this
case detections based on the data of their parent documents which is specified in the type parameter.

"query": {
"has_parent": {

"type": "user",

Seeing as we are looking for a user id, we need to use another has parent query on the document
select based on data in its parent, user.

"query": {
"match": {

"_id": "7ec54f7d7682"
}

}

Our final query within these nested parent-child queries is a match query based on the user id.

{ "range": {
"detectedAt": {

"gte": 1400000000000,
"lte": 1500000000000

}
}}

4.2 More Complicated Example 23

This is the last section of our query. Note that it is outside of the has parent queries from before
but still under the must section of the bool query. This means it is a query on the detection field that
must be satisfied. It is also a range query, which as the name suggests allows us to search for results
in a range. ’detectedAt’ tells the query which field of the data to search. ’gte’ means greater than and
’lte’ means less than. The times here are Unix time stamps.

That concludes our brief walkthrough of two Elasticsearch queries. There is a huge amount more
functionality to Elasticsearch. The Elasticsearch guide is the best place to start if you want to learn
Elasticsearch quickly . Then the Elasticsearch reference is great if you want to learn more about
specifc functionality.

• Guide
• Reference

Wish you all the best, The COMP3615 GradeProof Team

https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

	Introduction
	Aim
	About the API & Dashboard

	Deployment
	Setting Up Elasticsearch
	Updating Elasticsearch
	Setting Up API & Dashboard

	The Product
	The API
	Routes
	API Security

	The Dashboard
	Users Page
	Documents Page
	Platforms Page
	Rules Page

	Elasticsearch walkthrough
	Basic Example
	More Complicated Example

